### organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### 2-Amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydropyrimido[1,2-a]-[1,3,5]triazin-6(5*H*)-one<sup>1</sup>

#### Anton V. Dolzhenko,<sup>a</sup>\* Nikhil Sachdeva,<sup>a</sup> Geok Kheng Tan,<sup>b</sup> Lip Lin Koh<sup>b</sup> and Wai Keung Chui<sup>a</sup>

<sup>a</sup>Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and <sup>b</sup>Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

Correspondence e-mail: phada@nus.edu.sg

Received 6 February 2009; accepted 2 March 2009

Key indicators: single-crystal X-ray study; T = 223 K; mean  $\sigma$ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.052; wR factor = 0.138; data-to-parameter ratio = 14.6

The title compound, C<sub>13</sub>H<sub>9</sub>BrF<sub>3</sub>N<sub>5</sub>O, crystallizes with two independent molecules in the asymmetric unit. The pyrimidine rings of the molecules are planar [maximum deviations 0.053 (3) and 0.012 (3) Å], while the triazine rings adopt flattened half-boat conformations with the *p*-bromophenyl rings in the flagpole positions. The crystal packing is stabilized by a three-dimensional network of intermolecular  $N-H\cdots N$ ,  $N-H\cdots O$  and  $N-H\cdots F$  hydrogen bonds.

#### **Related literature**

For the crystal structure of 7,7-dimethyl-2-phenyl-6,7-dihydro-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine, see: Dolzhenko et al. (2007). For the preparation of benzo-fused analogues, see: Dolzhenko et al. (2008a). For the previous report in this series, see: Dolzhenko et al. (2008b).



#### **Experimental**

Crystal data C13H9BrF3N5O

```
M_r = 388.16
```

<sup>1</sup> Part 13 in the series 'Fused heterocyclic systems with an s-triazine ring'. For Part 12, see Dolzhenko et al. (2008b).

Orthorhombic, Pna21 a = 10.0531 (4) Å b = 29.9108 (13) Å c = 10.1945 (4) Å V = 3065.4 (2) Å<sup>3</sup>

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001)  $T_{\min} = 0.367, T_{\max} = 0.612$ (expected range = 0.348 - 0.580)

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.052$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.138$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 6287 reflections                | $\Delta \rho_{\rm max} = 1.50 \text{ e } \text{\AA}^{-3}$  |
| 432 parameters                  | $\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 16 restraints                   | Absolute structure: Flack (1983),                          |
|                                 | 2044 Friedel pairs                                         |

Z = 8

Mo  $K\alpha$  radiation

 $0.46 \times 0.34 \times 0.20 \text{ mm}$ 

20728 measured reflections

6287 independent reflections

4979 reflections with  $I > 2\sigma(I)$ 

 $\mu = 2.73 \text{ mm}^{-1}$ 

T = 223 K

 $R_{\rm int} = 0.037$ 

Flack parameter: 0.011 (10)

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$                                | D-H            | $H \cdot \cdot \cdot A$     | $D \cdots A$            | $D - \mathbf{H} \cdot \cdot \cdot A$  |
|------------------------------------------------------------|----------------|-----------------------------|-------------------------|---------------------------------------|
| $N1-H1N\cdots N2^{i}$                                      | 0.87 (2)       | 2.15 (2)                    | 3.005 (5)               | 171 (5)                               |
| $N5-H5A\cdots O2^{ii}$                                     | 0.895 (14)     | 2.09 (3)                    | 2.905 (5)               | 152 (5)                               |
| $N5-H5B\cdots N4^{i}$                                      | 0.892 (14)     | 2.25 (2)                    | 3.095 (6)               | 159 (5)                               |
| $N5-H5B\cdots F1^{i}$                                      | 0.892 (14)     | 2.46 (4)                    | 3.054 (5)               | 124 (4)                               |
| N6-H6N···N7 <sup>iii</sup>                                 | 0.902 (19)     | 2.10 (3)                    | 2.967 (5)               | 160 (5)                               |
| $N10-H10A\cdots O1$                                        | 0.89 (2)       | 2.03 (3)                    | 2.885 (5)               | 162 (5)                               |
| $N10-H10B\cdots N9^{iii}$                                  | 0.90 (2)       | 2.15 (2)                    | 3.041 (5)               | 171 (5)                               |
| Symmetry codes:<br>$x - \frac{1}{2}, -y + \frac{1}{2}, z.$ | (i) $-x+2, -y$ | $+1, z - \frac{1}{2};$ (ii) | $-x + \frac{3}{2}, y +$ | $\frac{1}{2}, z + \frac{1}{2};$ (iii) |

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Medical Research Council, Singapore (grant Nos. NMRC/NIG/0019/2008 and NMRC/NIG/0020/2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2543).

#### References

- Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.
- Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2008a). J. Heterocycl. Chem. 45, 173-176.
- Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008b). Tetrahedron Lett. 49, 7180-7183.
- Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007). Acta Cryst. E63 o2796.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o684 [doi:10.1107/S1600536809007612]

# 2-Amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydropyrimido[1,2-*a*][1,3,5]triazin-6(5*H*)-one

#### A. V. Dolzhenko, N. Sachdeva, G. K. Tan, L. L. Koh and W. K. Chui

#### Comment

The title compound was synthesized *via* thermal cyclocondensation of 6-oxo-4-trifluoromethyl-1,6-dihydropyrimidin-2-yl guanidine with *p*-bromobenzaldehyde (Fig.1) using the methodology that we successfully applied previously for the preparation of its benzofused analogues (Dolzhenko *et al.*, 2008*a*). In general, the synthesized compound might be involved in tautomerism with four possible tautomers (Fig. 2). However, only one tautomeric form *viz*. 2-amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6*H*-pyrimido[1,2-*a*][1,3,5]triazin-6-one was found in the crystal.

The compound crystallized with two independent molecules (**A** and **B**) in the asymmetric unit (Fig. 3). The pyrimidine rings in the molecules are planar with maximum deviations 0.0525 (26) Å (C3) and 0.0118 (32) Å (C18) from the planes C3/N3/C4—C6/N4 and C16/N8/C17—C19/N9 of molecules **A** and **B**, respectively. Similarly to structurally related 7,7-dimethyl-2-phenyl-6,7-dyhydro-1,2,4-triazolo[1,5-*a*][1,3,5]triazin-5-amine (Dolzhenko *et al.*, 2007), the triazine rings in the molecules adopt flattened half-boat conformations with atoms N2 and N7 at the sterns and *sp*<sup>3</sup>-hybridized atoms C1 and C14 at the bows with *p*-bromophenyl rings as flagpoles. However, the molecules are significantly different in the geometry at bridgehead nitrogen atoms (N3 and N8) and *sp*<sup>3</sup>-hybridized atoms C1 and C14 of the triazine rings. The torsion angles C4—N3—C1—N1 and C17—N8—C14—N6 are 136.7 (4)° and 150.4 (3)°, respectively. In molecule **B**, the bond N8—C14 is located almost in the phenyl ring (C21—C26) plane: the torsion angle N8—C14—C21—C26 is 2.6 (5)°. The corresponding torsion angle N3—C1—C8—C9 of molecule **A** is 42.5 (6)°. The N1—C2, N2—C2, N5—C2 bond distances in **A** and N6—C15, N7—C15, N10—C15 in **B** are similar that suggests guanidine-like electron delocalization in N1/N2/N5/C2 and N6/N7/N10/C15 fragments of the molecules.

The crystal packing is stabilized by three-dimensional network of intramolecular N—H···N, N—H···O and N—H···F hydrogen bonds (Table 1, Fig. 4).

#### **Experimental**

2-Amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6*H*-pyrimido[1,2-*a*][1,3,5]triazin-6-one was synthesized from 6-oxo-4-trifluoromethyl-1,6-dihydropyrimidin-2-yl guanidine and *p*-bromobenzaldehyde according to general method reported by Dolzhenko *et al.* (2008*a*). Single crystals suitable for crystallographic analysis were grown by slow evaporation of the solution in ethyl acetate / methanol.

#### Refinement

N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.94 or 0.99 Å) and were constrained in a riding motion approximation with  $U_{iso}(H) = 1.2U_{eq}(C)$ . One of the BrC<sub>6</sub>H<sub>4</sub> parts is disordered into two parts at 89:11 ratio.

**Figures** 



Fig. 1. The synthesis of 2-amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6*H*-pyrimido[1,2-*a*][1,3,5]triazin-6-one

Fig. 2. Tautomerism in the title compound



Fig. 3. The molecular structure of 2-amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4-dihydro-6H-pyrimido[1,2-a][1,3,5]triazin-6-one with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.



Fig. 4. Molecular parking in the crystal, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

#### 2-Amino-4-(4-bromophenyl)-8-trifluoromethyl-3,4- dihydropyrimido[1,2-a][1,3,5]triazin-6(5H)-one

| Crystal | data |
|---------|------|
| Crysiai | uuiu |

C<sub>13</sub>H<sub>9</sub>BrF<sub>3</sub>N<sub>5</sub>O  $M_r = 388.16$ Orthorhombic, *Pna2*<sub>1</sub> Hall symbol: P 2c -2n a = 10.0531 (4) Å b = 29.9108 (13) Å c = 10.1945 (4) Å V = 3065.4 (2) Å<sup>3</sup> Z = 8 $F_{000} = 1536$ 

| $D_{\rm x} = 1.682 \ {\rm Mg \ m}^{-3}$         |
|-------------------------------------------------|
| Melting point: 516 K                            |
| Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Cell parameters from 5069 reflections           |
| $\theta = 2.4 - 25.1^{\circ}$                   |
| $\mu = 2.73 \text{ mm}^{-1}$                    |
| T = 223  K                                      |
| Block, colourless                               |
| $0.46 \times 0.34 \times 0.20 \text{ mm}$       |

#### Data collection

| Bruker SMART APEX CCD diffractometer     | 6287 independent reflections           |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | 4979 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                  | $R_{\rm int} = 0.037$                  |
| <i>T</i> = 223 K                         | $\theta_{\rm max} = 27.5^{\circ}$      |
| $\phi$ and $\omega$ scans                | $\theta_{\min} = 1.4^{\circ}$          |
| Absorption correction: multi-scan        | $h = -12 \rightarrow 13$               |

| (SADABS; Sheldrick, 2001)            |                          |
|--------------------------------------|--------------------------|
| $T_{\min} = 0.367, T_{\max} = 0.612$ | $k = -38 \rightarrow 38$ |
| 20728 measured reflections           | $l = -13 \rightarrow 11$ |

Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                                            |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H atoms treated by a mixture of independent and constrained refinement                              |
| $R[F^2 > 2\sigma(F^2)] = 0.052$                                | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0646P)^{2} + 2.1384P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| $wR(F^2) = 0.138$                                              | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                 |
| <i>S</i> = 1.04                                                | $\Delta \rho_{max} = 1.50 \text{ e} \text{ Å}^{-3}$                                                 |
| 6287 reflections                                               | $\Delta \rho_{min} = -0.73 \text{ e } \text{\AA}^{-3}$                                              |
| 432 parameters                                                 | Extinction correction: none                                                                         |
| 16 restraints                                                  | Absolute structure: Flack (1983), 2044 Friedel pairs                                                |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.011 (10)                                                                         |
|                                                                |                                                                                                     |

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | у            | Z          | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|------------|--------------|------------|-------------------------------|-----------|
| 01  | 1.0316 (3) | 0.34878 (10) | 1.2353 (3) | 0.0346 (7)                    |           |
| F1  | 0.9317 (4) | 0.36022 (11) | 1.7842 (4) | 0.0634 (10)                   |           |
| F2  | 0.8409 (4) | 0.30866 (11) | 1.6709 (4) | 0.0750 (12)                   |           |
| F3  | 0.7371 (4) | 0.37004 (16) | 1.7065 (5) | 0.0873 (14)                   |           |
| N1  | 1.0194 (3) | 0.47967 (11) | 1.2317 (4) | 0.0259 (7)                    |           |
| H1N | 1.012 (5)  | 0.4927 (15)  | 1.156 (3)  | 0.031*                        |           |
| N2  | 0.9826 (3) | 0.48272 (10) | 1.4583 (3) | 0.0237 (7)                    |           |
| N3  | 1.0181 (3) | 0.41352 (10) | 1.3521 (3) | 0.0232 (7)                    |           |
| N4  | 0.9342 (4) | 0.41721 (11) | 1.5665 (4) | 0.0290 (7)                    |           |
| N5  | 0.9597 (4) | 0.54572 (11) | 1.3299 (4) | 0.0335 (8)                    |           |
| H5A | 0.919 (5)  | 0.5568 (15)  | 1.401 (3)  | 0.040*                        |           |
| H5B | 0.982 (5)  | 0.5632 (14)  | 1.262 (4)  | 0.040*                        |           |

| C1   | 1.0910 (4)   | 0.43826 (13) | 1.2510 (4)   | 0.0250 (8)  |           |
|------|--------------|--------------|--------------|-------------|-----------|
| H1A  | 1.0904       | 0.4209       | 1.1683       | 0.030*      |           |
| C2   | 0.9892 (4)   | 0.50251 (13) | 1.3412 (4)   | 0.0249 (8)  |           |
| C3   | 0.9789 (4)   | 0.43766 (13) | 1.4607 (4)   | 0.0258 (8)  |           |
| C4   | 0.9958 (4)   | 0.36750 (13) | 1.3367 (5)   | 0.0288 (9)  |           |
| C5   | 0.9359 (5)   | 0.34747 (15) | 1.4486 (5)   | 0.0387 (10) |           |
| H5   | 0.9122       | 0.3171       | 1.4478       | 0.046*      |           |
| C6   | 0.9137 (5)   | 0.37273 (15) | 1.5558 (5)   | 0.0358 (10) |           |
| C7   | 0.8558 (7)   | 0.35237 (18) | 1.6796 (6)   | 0.0542 (15) |           |
| C8   | 1.2338 (4)   | 0.44558 (14) | 1.2947 (5)   | 0.0279 (9)  |           |
| C9   | 1.3053 (5)   | 0.41197 (16) | 1.3543 (6)   | 0.0454 (13) |           |
| H9   | 1.2654       | 0.3838       | 1.3664       | 0.054*      |           |
| C10  | 1.4348 (5)   | 0.41866 (18) | 1.3968 (6)   | 0.0519 (14) |           |
| H10  | 1.4826       | 0.3954       | 1.4372       | 0.062*      |           |
| C11  | 1.4917 (4)   | 0.45984 (18) | 1.3788 (6)   | 0.0441 (12) |           |
| C12  | 1.4249 (5)   | 0.49351 (18) | 1.3178 (6)   | 0.0450 (12) |           |
| H12  | 1.4660       | 0.5214       | 1.3044       | 0.054*      |           |
| C13  | 1.2959 (5)   | 0.48627 (15) | 1.2758 (5)   | 0.0362 (10) |           |
| H13  | 1.2495       | 0.5095       | 1.2336       | 0.043*      |           |
| Br1  | 1.66612 (4)  | 0.47071 (3)  | 1.44122 (8)  | 0.0697 (2)  |           |
| O2   | 0.7222 (3)   | 0.09824 (9)  | 0.9889 (3)   | 0.0338 (7)  |           |
| F4   | 1.2813 (4)   | 0.10516 (13) | 1.0040 (5)   | 0.0782 (13) |           |
| F5   | 1.1837 (3)   | 0.05015 (8)  | 1.0941 (4)   | 0.0578 (10) |           |
| F6   | 1.2446 (3)   | 0.10589 (11) | 1.2081 (5)   | 0.0631 (10) |           |
| N6   | 0.7243 (3)   | 0.22885 (11) | 1.0553 (4)   | 0.0271 (8)  |           |
| H6N  | 0.653 (3)    | 0.2463 (13)  | 1.073 (5)    | 0.032*      |           |
| N7   | 0.9576 (3)   | 0.22901 (10) | 1.0690 (4)   | 0.0261 (7)  |           |
| N8   | 0.8395 (3)   | 0.16152 (10) | 1.0287 (4)   | 0.0237 (7)  |           |
| N9   | 1.0675 (3)   | 0.16188 (11) | 1.0790 (4)   | 0.0288 (8)  |           |
| N10  | 0.8364 (4)   | 0.29270 (11) | 1.1091 (4)   | 0.0319 (8)  |           |
| H10A | 0.909 (3)    | 0.3050 (15)  | 1.144 (5)    | 0.038*      |           |
| H10B | 0.762 (3)    | 0.3090 (15)  | 1.104 (6)    | 0.038*      |           |
| C20  | 1.1928 (5)   | 0.09342 (14) | 1.0926 (6)   | 0.0377 (11) |           |
| C14  | 0.7273 (4)   | 0.18807 (12) | 0.9806 (5)   | 0.0258 (9)  |           |
| H14  | 0.6443       | 0.1713       | 0.9985       | 0.031*      |           |
| C15  | 0.8407 (4)   | 0.25037 (12) | 1.0759 (4)   | 0.0231 (8)  |           |
| C16  | 0.9555 (4)   | 0.18357 (12) | 1.0582 (4)   | 0.0246 (8)  |           |
| C17  | 0.8279 (4)   | 0.11509 (13) | 1.0201 (4)   | 0.0255 (8)  |           |
| C18  | 0.9505 (4)   | 0.09218 (13) | 1.0451 (5)   | 0.0287 (9)  |           |
| H18  | 0.9540       | 0.0608       | 1.0441       | 0.034*      |           |
| C19  | 1.0602 (4)   | 0.11631 (13) | 1.0699 (4)   | 0.0291 (9)  |           |
| Br2  | 0.74894 (14) | 0.22662 (3)  | 0.38715 (10) | 0.0924 (5)  | 0.899 (3) |
| C21  | 0.7359 (4)   | 0.19636 (19) | 0.8349 (3)   | 0.0312 (13) | 0.899 (3) |
| C22  | 0.6379 (4)   | 0.22284 (19) | 0.7782 (4)   | 0.0475 (14) | 0.899 (3) |
| H22  | 0.5695       | 0.2348       | 0.8304       | 0.057*      | 0.899 (3) |
| C23  | 0.6409 (4)   | 0.23160 (16) | 0.6443 (4)   | 0.0599 (19) | 0.899 (3) |
| H23  | 0.5747       | 0.2495       | 0.6060       | 0.072*      | 0.899 (3) |
| C24  | 0.7420 (4)   | 0.21389 (14) | 0.5671 (3)   | 0.0509 (16) | 0.899 (3) |
| C25  | 0.8400 (4)   | 0.18741 (14) | 0.6238 (3)   | 0.0621 (19) | 0.899 (3) |
|      |              |              |              |             |           |

| 0.9084     | 0.1754                                                                                                                                                             | 0.5716                                                                                                                                                                                                                               | 0.075*                                                                                                                                                                                                                                                                                                                                                   | 0.899 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.8370 (4) | 0.17865 (16)                                                                                                                                                       | 0.7577 (3)                                                                                                                                                                                                                           | 0.0463 (16)                                                                                                                                                                                                                                                                                                                                              | 0.899 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.9033     | 0.1607                                                                                                                                                             | 0.7960                                                                                                                                                                                                                               | 0.056*                                                                                                                                                                                                                                                                                                                                                   | 0.899 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.8608 (7) | 0.21715 (19)                                                                                                                                                       | 0.3838 (6)                                                                                                                                                                                                                           | 0.054 (2)*                                                                                                                                                                                                                                                                                                                                               | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.756 (6)  | 0.197 (3)                                                                                                                                                          | 0.829 (2)                                                                                                                                                                                                                            | 0.045*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.668 (5)  | 0.219 (3)                                                                                                                                                          | 0.747 (3)                                                                                                                                                                                                                            | 0.062*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.5867     | 0.2298                                                                                                                                                             | 0.7806                                                                                                                                                                                                                               | 0.075*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.699 (4)  | 0.225 (2)                                                                                                                                                          | 0.616 (2)                                                                                                                                                                                                                            | 0.062*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.6392     | 0.2402                                                                                                                                                             | 0.5601                                                                                                                                                                                                                               | 0.075*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.818 (3)  | 0.2090 (17)                                                                                                                                                        | 0.5660 (15)                                                                                                                                                                                                                          | 0.062*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.907 (4)  | 0.1867 (17)                                                                                                                                                        | 0.6480 (18)                                                                                                                                                                                                                          | 0.062*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.9876     | 0.1758                                                                                                                                                             | 0.6145                                                                                                                                                                                                                               | 0.075*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.875 (5)  | 0.181 (2)                                                                                                                                                          | 0.7796 (19)                                                                                                                                                                                                                          | 0.062*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.9351     | 0.1654                                                                                                                                                             | 0.8350                                                                                                                                                                                                                               | 0.075*                                                                                                                                                                                                                                                                                                                                                   | 0.101 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 0.9084<br>0.8370 (4)<br>0.9033<br>0.8608 (7)<br>0.756 (6)<br>0.668 (5)<br>0.5867<br>0.699 (4)<br>0.6392<br>0.818 (3)<br>0.907 (4)<br>0.9876<br>0.875 (5)<br>0.9351 | 0.90840.17540.8370 (4)0.17865 (16)0.90330.16070.8608 (7)0.21715 (19)0.756 (6)0.197 (3)0.668 (5)0.219 (3)0.58670.22980.699 (4)0.225 (2)0.63920.24020.818 (3)0.2090 (17)0.907 (4)0.1867 (17)0.98760.17580.875 (5)0.181 (2)0.93510.1654 | 0.90840.17540.57160.8370 (4)0.17865 (16)0.7577 (3)0.90330.16070.79600.8608 (7)0.21715 (19)0.3838 (6)0.756 (6)0.197 (3)0.829 (2)0.668 (5)0.219 (3)0.747 (3)0.58670.22980.78060.699 (4)0.225 (2)0.616 (2)0.63920.24020.56010.818 (3)0.2090 (17)0.5660 (15)0.907 (4)0.1867 (17)0.6480 (18)0.98760.17580.61450.875 (5)0.181 (2)0.7796 (19)0.93510.16540.8350 | 0.90840.17540.57160.075*0.8370 (4)0.17865 (16)0.7577 (3)0.0463 (16)0.90330.16070.79600.056*0.8608 (7)0.21715 (19)0.3838 (6)0.054 (2)*0.756 (6)0.197 (3)0.829 (2)0.045*0.668 (5)0.219 (3)0.747 (3)0.062*0.58670.22980.78060.075*0.699 (4)0.225 (2)0.616 (2)0.062*0.63920.24020.56010.075*0.818 (3)0.2090 (17)0.5660 (15)0.062*0.907 (4)0.1867 (17)0.6480 (18)0.062*0.98760.17580.61450.075*0.875 (5)0.181 (2)0.7796 (19)0.062*0.93510.16540.83500.075* |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0404 (17) | 0.0260 (14) | 0.0375 (18) | -0.0012 (12) | -0.0011 (14) | -0.0105 (13) |
| F1  | 0.103 (3)   | 0.0442 (17) | 0.0428 (19) | -0.0128 (17) | 0.0068 (19)  | 0.0091 (14)  |
| F2  | 0.119 (3)   | 0.0427 (17) | 0.063 (2)   | -0.039 (2)   | 0.021 (2)    | 0.0051 (17)  |
| F3  | 0.071 (3)   | 0.101 (3)   | 0.090 (3)   | 0.004 (2)    | 0.044 (2)    | 0.032 (3)    |
| N1  | 0.0288 (17) | 0.0241 (16) | 0.0247 (18) | 0.0042 (13)  | -0.0028 (14) | -0.0010 (14) |
| N2  | 0.0241 (15) | 0.0214 (15) | 0.0255 (19) | 0.0018 (12)  | 0.0019 (14)  | 0.0007 (14)  |
| N3  | 0.0235 (16) | 0.0197 (14) | 0.0265 (19) | 0.0033 (12)  | -0.0003 (13) | -0.0010 (13) |
| N4  | 0.0333 (18) | 0.0281 (16) | 0.0258 (18) | -0.0022 (14) | 0.0025 (15)  | 0.0023 (15)  |
| N5  | 0.047 (2)   | 0.0229 (17) | 0.031 (2)   | 0.0074 (15)  | 0.0066 (18)  | 0.0020 (16)  |
| C1  | 0.0256 (19) | 0.0257 (19) | 0.024 (2)   | 0.0051 (15)  | 0.0029 (15)  | -0.0009 (16) |
| C2  | 0.0203 (18) | 0.0254 (18) | 0.029 (2)   | 0.0001 (14)  | -0.0008 (16) | 0.0024 (16)  |
| C3  | 0.0210 (17) | 0.0277 (19) | 0.029 (2)   | 0.0016 (14)  | -0.0037 (16) | -0.0034 (17) |
| C4  | 0.027 (2)   | 0.0196 (18) | 0.040 (2)   | 0.0005 (15)  | -0.0060 (18) | -0.0055 (18) |
| C5  | 0.047 (2)   | 0.028 (2)   | 0.041 (3)   | -0.0088 (18) | -0.003 (2)   | 0.002 (2)    |
| C6  | 0.034 (2)   | 0.032 (2)   | 0.041 (3)   | -0.0076 (18) | 0.000 (2)    | 0.005 (2)    |
| C7  | 0.071 (4)   | 0.041 (3)   | 0.050 (4)   | -0.013 (3)   | 0.016 (3)    | 0.005 (3)    |
| C8  | 0.027 (2)   | 0.031 (2)   | 0.026 (2)   | 0.0038 (16)  | 0.0029 (17)  | -0.0034 (17) |
| С9  | 0.034 (2)   | 0.037 (2)   | 0.065 (4)   | -0.0027 (19) | -0.006 (2)   | 0.019 (2)    |
| C10 | 0.035 (2)   | 0.059 (3)   | 0.062 (4)   | 0.012 (2)    | -0.008 (2)   | 0.018 (3)    |
| C11 | 0.020 (2)   | 0.067 (3)   | 0.045 (3)   | 0.000 (2)    | -0.009 (2)   | -0.015 (3)   |
| C12 | 0.033 (2)   | 0.044 (3)   | 0.058 (3)   | -0.009 (2)   | 0.006 (2)    | -0.012 (2)   |
| C13 | 0.029 (2)   | 0.033 (2)   | 0.047 (3)   | -0.0071 (18) | -0.001 (2)   | 0.000 (2)    |
| Br1 | 0.0269 (2)  | 0.1078 (5)  | 0.0743 (4)  | 0.0028 (3)   | -0.0111 (3)  | -0.0396 (4)  |
| 02  | 0.0328 (16) | 0.0275 (14) | 0.0410 (19) | -0.0115 (12) | -0.0019 (13) | -0.0060 (13) |
| F4  | 0.054 (2)   | 0.075 (2)   | 0.105 (3)   | 0.0289 (17)  | 0.040 (2)    | 0.035 (2)    |
| F5  | 0.0513 (18) | 0.0253 (13) | 0.097 (3)   | 0.0075 (12)  | -0.0090 (18) | -0.0024 (16) |
| F6  | 0.0541 (19) | 0.0514 (17) | 0.084 (3)   | 0.0087 (15)  | -0.0318 (19) | -0.0024 (19) |
| N6  | 0.0182 (16) | 0.0241 (16) | 0.039 (2)   | 0.0027 (12)  | -0.0038 (14) | -0.0013 (15) |
| N7  | 0.0238 (16) | 0.0228 (15) | 0.0317 (19) | -0.0017 (12) | -0.0012 (14) | -0.0055 (15) |
| N8  | 0.0236 (16) | 0.0170 (14) | 0.0306 (19) | -0.0037 (13) | 0.0000 (13)  | -0.0022 (13) |

| N9  | 0.0234 (16) | 0.0271 (16) | 0.036 (2)   | -0.0004 (13) | -0.0010 (15) | -0.0021 (16) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N10 | 0.0282 (18) | 0.0223 (17) | 0.045 (2)   | -0.0005 (13) | -0.0071 (16) | -0.0066 (16) |
| C20 | 0.036 (2)   | 0.024 (2)   | 0.053 (3)   | 0.0041 (17)  | 0.004 (2)    | 0.006 (2)    |
| C14 | 0.0235 (19) | 0.0188 (18) | 0.035 (2)   | -0.0034 (14) | -0.0021 (16) | 0.0006 (16)  |
| C15 | 0.0263 (19) | 0.0203 (17) | 0.0227 (19) | 0.0001 (14)  | -0.0019 (16) | 0.0032 (16)  |
| C16 | 0.0223 (18) | 0.0272 (19) | 0.024 (2)   | -0.0066 (15) | 0.0011 (16)  | -0.0003 (16) |
| C17 | 0.033 (2)   | 0.0238 (18) | 0.0199 (19) | -0.0006 (16) | 0.0032 (16)  | -0.0034 (16) |
| C18 | 0.032 (2)   | 0.0179 (17) | 0.036 (2)   | -0.0016 (16) | -0.0008 (18) | 0.0034 (17)  |
| C19 | 0.031 (2)   | 0.028 (2)   | 0.028 (2)   | 0.0018 (16)  | 0.0023 (18)  | 0.0035 (18)  |
| Br2 | 0.1629 (13) | 0.0842 (6)  | 0.0300 (3)  | -0.0488 (7)  | -0.0104 (5)  | 0.0130 (4)   |
| C21 | 0.044 (3)   | 0.019 (2)   | 0.030 (3)   | -0.017 (2)   | -0.012 (2)   | -0.0023 (19) |
| C22 | 0.053 (4)   | 0.051 (4)   | 0.039 (3)   | 0.004 (3)    | -0.011 (3)   | 0.008 (3)    |
| C23 | 0.084 (5)   | 0.051 (4)   | 0.045 (4)   | -0.008 (4)   | -0.024 (4)   | 0.012 (3)    |
| C24 | 0.087 (5)   | 0.043 (3)   | 0.023 (3)   | -0.027 (3)   | -0.007 (3)   | 0.000 (3)    |
| C25 | 0.092 (6)   | 0.063 (4)   | 0.031 (3)   | -0.010 (4)   | 0.006 (3)    | -0.011 (3)   |
| C26 | 0.065 (4)   | 0.046 (3)   | 0.028 (3)   | 0.001 (3)    | -0.003 (3)   | -0.004 (2)   |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| O1—C4   | 1.229 (5)  | N6—H6N   | 0.902 (19) |
|---------|------------|----------|------------|
| F1—C7   | 1.331 (8)  | N7—C15   | 1.339 (5)  |
| F2—C7   | 1.319 (6)  | N7—C16   | 1.364 (5)  |
| F3—C7   | 1.334 (7)  | N8—C16   | 1.373 (5)  |
| N1—C2   | 1.344 (6)  | N8—C17   | 1.396 (5)  |
| N1—C1   | 1.446 (5)  | N8—C14   | 1.464 (5)  |
| N1—H1N  | 0.87 (2)   | N9—C16   | 1.317 (5)  |
| N2—C2   | 1.334 (6)  | N9—C19   | 1.368 (5)  |
| N2—C3   | 1.348 (5)  | N10—C15  | 1.311 (5)  |
| N3—C3   | 1.379 (5)  | N10—H10A | 0.89 (2)   |
| N3—C4   | 1.403 (5)  | N10—H10B | 0.90 (2)   |
| N3—C1   | 1.465 (5)  | C20—C19  | 1.516 (6)  |
| N4—C3   | 1.318 (6)  | C14—C21  | 1.509 (5)  |
| N4—C6   | 1.351 (6)  | C14—C21A | 1.591 (9)  |
| N5—C2   | 1.331 (5)  | C14—H14  | 0.9900     |
| N5—H5A  | 0.895 (14) | C17—C18  | 1.433 (6)  |
| N5—H5B  | 0.892 (14) | C18—C19  | 1.343 (6)  |
| C1—C8   | 1.519 (6)  | C18—H18  | 0.9400     |
| C1—H1A  | 0.9900     | Br2—C24  | 1.875 (3)  |
| C4—C5   | 1.423 (7)  | C21—C22  | 1.3900     |
| C5—C6   | 1.347 (8)  | C21—C26  | 1.3900     |
| С5—Н5   | 0.9400     | C22—C23  | 1.3900     |
| C6—C7   | 1.517 (7)  | C22—H22  | 0.9400     |
| C8—C9   | 1.377 (6)  | C23—C24  | 1.3900     |
| C8—C13  | 1.381 (6)  | С23—Н23  | 0.9400     |
| C9—C10  | 1.387 (7)  | C24—C25  | 1.3900     |
| С9—Н9   | 0.9400     | C25—C26  | 1.3900     |
| C10—C11 | 1.371 (8)  | С25—Н25  | 0.9400     |
| C10—H10 | 0.9400     | C26—H26  | 0.9400     |
| C11—C12 | 1.361 (8)  | Br3—C24A | 1.921 (7)  |

| C11—Br1    | 1.893 (4) | C21A—C22A    | 1.3900    |
|------------|-----------|--------------|-----------|
| C12—C13    | 1.383 (7) | C21A—C26A    | 1.3900    |
| C12—H12    | 0.9400    | C22A—C23A    | 1.3900    |
| С13—Н13    | 0.9400    | C22A—H22A    | 0.9400    |
| O2—C17     | 1.219 (5) | C23A—C24A    | 1.3900    |
| F4—C20     | 1.316 (6) | C23A—H23A    | 0.9400    |
| F5—C20     | 1.298 (5) | C24A—C25A    | 1.3900    |
| F6—C20     | 1.341 (7) | C25A—C26A    | 1.3900    |
| N6—C15     | 1.352 (5) | C25A—H25A    | 0.9400    |
| N6—C14     | 1.439 (5) | C26A—H26A    | 0.9400    |
| C2—N1—C1   | 115.8 (4) | F5—C20—F4    | 108.7 (4) |
| C2—N1—H1N  | 119 (3)   | F5—C20—F6    | 107.1 (4) |
| C1—N1—H1N  | 123 (3)   | F4—C20—F6    | 105.4 (4) |
| C2—N2—C3   | 117.5 (3) | F5-C20-C19   | 113.0 (4) |
| C3—N3—C4   | 123.9 (4) | F4—C20—C19   | 111.7 (4) |
| C3—N3—C1   | 116.3 (3) | F6—C20—C19   | 110.5 (4) |
| C4—N3—C1   | 119.7 (3) | N6—C14—N8    | 107.3 (3) |
| C3—N4—C6   | 116.3 (4) | N6-C14-C21   | 112.5 (4) |
| C2—N5—H5A  | 113 (3)   | N8—C14—C21   | 112.0 (4) |
| C2—N5—H5B  | 126 (4)   | N6-C14-C21A  | 112 (3)   |
| H5A—N5—H5B | 121 (5)   | N8—C14—C21A  | 106 (2)   |
| N1—C1—N3   | 106.2 (3) | C21—C14—C21A | 7(2)      |
| N1—C1—C8   | 112.7 (3) | N6—C14—H14   | 108.3     |
| N3—C1—C8   | 109.8 (3) | N8—C14—H14   | 108.3     |
| N1—C1—H1A  | 109.3     | C21—C14—H14  | 108.3     |
| N3—C1—H1A  | 109.3     | C21A—C14—H14 | 114.4     |
| C8—C1—H1A  | 109.3     | N10-C15-N7   | 120.2 (3) |
| N5-C2-N2   | 119.8 (4) | N10-C15-N6   | 118.1 (3) |
| N5—C2—N1   | 118.1 (4) | N7—C15—N6    | 121.6 (3) |
| N2-C2-N1   | 122.0 (4) | N9—C16—N7    | 117.7 (3) |
| N4—C3—N2   | 119.2 (4) | N9—C16—N8    | 121.7 (3) |
| N4—C3—N3   | 120.7 (3) | N7—C16—N8    | 120.6 (3) |
| N2—C3—N3   | 120.0 (4) | O2—C17—N8    | 120.0 (4) |
| O1—C4—N3   | 119.7 (4) | O2—C17—C18   | 126.8 (4) |
| O1—C4—C5   | 127.3 (4) | N8—C17—C18   | 113.1 (3) |
| N3—C4—C5   | 113.0 (4) | C19—C18—C17  | 118.9 (4) |
| C6—C5—C4   | 119.0 (4) | C19—C18—H18  | 120.6     |
| С6—С5—Н5   | 120.5     | C17—C18—H18  | 120.6     |
| С4—С5—Н5   | 120.5     | C18—C19—N9   | 126.3 (4) |
| C5—C6—N4   | 126.3 (4) | C18—C19—C20  | 120.6 (4) |
| C5—C6—C7   | 120.9 (4) | N9—C19—C20   | 113.1 (4) |
| N4—C6—C7   | 112.8 (4) | C22—C21—C26  | 120.0     |
| F2—C7—F1   | 107.1 (5) | C22—C21—C14  | 117.5 (3) |
| F2—C7—F3   | 107.7 (5) | C26—C21—C14  | 122.5 (3) |
| F1—C7—F3   | 106.2 (5) | C21—C22—C23  | 120.0     |
| F2C7C6     | 112.7 (5) | C21—C22—H22  | 120.0     |
| F1—C7—C6   | 112.1 (4) | C23—C22—H22  | 120.0     |
| F3—C7—C6   | 110.8 (5) | C24—C23—C22  | 120.0     |
| C9—C8—C13  | 118.0 (4) | C24—C23—H23  | 120.0     |

| C9—C8—C1      | 121.2 (4)  | С22—С23—Н23     | 120.0      |
|---------------|------------|-----------------|------------|
| C13—C8—C1     | 120.9 (4)  | C23—C24—C25     | 120.0      |
| C8—C9—C10     | 121.5 (4)  | C23—C24—Br2     | 120.2 (2)  |
| С8—С9—Н9      | 119.2      | C25—C24—Br2     | 119.7 (2)  |
| С10—С9—Н9     | 119.2      | C24—C25—C26     | 120.0      |
| C11—C10—C9    | 118.7 (5)  | С24—С25—Н25     | 120.0      |
| C11—C10—H10   | 120.7      | C26—C25—H25     | 120.0      |
| С9—С10—Н10    | 120.7      | C25—C26—C21     | 120.0      |
| C12—C11—C10   | 121.3 (4)  | С25—С26—Н26     | 120.0      |
| C12—C11—Br1   | 118.9 (4)  | C21—C26—H26     | 120.0      |
| C10-C11-Br1   | 119.7 (4)  | C22A—C21A—C26A  | 120.0      |
| C11—C12—C13   | 119.3 (5)  | C22A—C21A—C14   | 123 (3)    |
| C11—C12—H12   | 120.4      | C26A—C21A—C14   | 117 (3)    |
| C13—C12—H12   | 120.4      | C21A—C22A—C23A  | 120.0      |
| C8—C13—C12    | 121.2 (5)  | C21A—C22A—H22A  | 120.0      |
| C8—C13—H13    | 119.4      | C23A—C22A—H22A  | 120.0      |
| C12—C13—H13   | 119.4      | C24A—C23A—C22A  | 120.0      |
| C15—N6—C14    | 117.9 (3)  | C24A—C23A—H23A  | 120.0      |
| C15—N6—H6N    | 112 (3)    | C22A—C23A—H23A  | 120.0      |
| C14—N6—H6N    | 128 (3)    | C23A—C24A—C25A  | 120.0      |
| C15—N7—C16    | 117.8 (3)  | C23A—C24A—Br3   | 119.9 (4)  |
| C16—N8—C17    | 124.2 (3)  | C25A—C24A—Br3   | 120.0 (4)  |
| C16—N8—C14    | 117.9 (3)  | C26A—C25A—C24A  | 120.0      |
| C17—N8—C14    | 117.0 (3)  | C26A—C25A—H25A  | 120.0      |
| C16—N9—C19    | 115.7 (3)  | C24A—C25A—H25A  | 120.0      |
| C15—N10—H10A  | 118 (3)    | C25A—C26A—C21A  | 120.0      |
| C15—N10—H10B  | 122 (3)    | C25A—C26A—H26A  | 120.0      |
| H10A—N10—H10B | 119 (5)    | C21A—C26A—H26A  | 120.0      |
| C2—N1—C1—N3   | 49.4 (5)   | C14—N6—C15—N10  | 160.7 (4)  |
| C2—N1—C1—C8   | -70.9 (5)  | C14—N6—C15—N7   | -22.5 (6)  |
| C3—N3—C1—N1   | -45.3 (4)  | C19—N9—C16—N7   | 178.7 (4)  |
| C4—N3—C1—N1   | 136.7 (4)  | C19—N9—C16—N8   | -0.3 (6)   |
| C3—N3—C1—C8   | 76.9 (4)   | C15—N7—C16—N9   | -166.1 (4) |
| C4—N3—C1—C8   | -101.0 (4) | C15—N7—C16—N8   | 12.9 (6)   |
| C3—N2—C2—N5   | 163.1 (4)  | C17—N8—C16—N9   | 1.2 (6)    |
| C3—N2—C2—N1   | -13.9 (6)  | C14—N8—C16—N9   | -167.5 (4) |
| C1—N1—C2—N5   | 160.7 (4)  | C17—N8—C16—N7   | -177.8 (4) |
| C1—N1—C2—N2   | -22.3 (6)  | C14—N8—C16—N7   | 13.5 (6)   |
| C6—N4—C3—N2   | 170.1 (4)  | C16—N8—C17—O2   | -177.5 (4) |
| C6—N4—C3—N3   | -8.0 (6)   | C14—N8—C17—O2   | -8.7 (6)   |
| C2—N2—C3—N4   | -160.4 (4) | C16—N8—C17—C18  | -0.2 (6)   |
| C2—N2—C3—N3   | 17.8 (5)   | C14—N8—C17—C18  | 168.6 (4)  |
| C4—N3—C3—N4   | 9.9 (6)    | O2-C17-C18-C19  | 175.5 (4)  |
| C1—N3—C3—N4   | -167.9 (4) | N8—C17—C18—C19  | -1.6 (6)   |
| C4—N3—C3—N2   | -168.2 (3) | C17—C18—C19—N9  | 2.6 (7)    |
| C1—N3—C3—N2   | 13.9 (5)   | C17—C18—C19—C20 | -178.1 (4) |
| C3—N3—C4—O1   | 178.5 (4)  | C16—N9—C19—C18  | -1.6 (7)   |
| ~             |            |                 |            |
| C1—N3—C4—O1   | -3.8 (6)   | C16—N9—C19—C20  | 179.1 (4)  |

| C1—N3—C4—C5     | 174.0 (4)  | F4                  | 118.5 (5)  |
|-----------------|------------|---------------------|------------|
| O1—C4—C5—C6     | 174.3 (4)  | F6-C20-C19-C18      | -124.5 (5) |
| N3—C4—C5—C6     | -3.2 (6)   | F5-C20-C19-N9       | 175.0 (4)  |
| C4—C5—C6—N4     | 5.0 (8)    | F4-C20-C19-N9       | -62.1 (6)  |
| C4—C5—C6—C7     | -177.2 (5) | F6-C20-C19-N9       | 54.9 (5)   |
| C3—N4—C6—C5     | 0.8 (7)    | N6-C14-C21-C22      | -56.3 (4)  |
| C3—N4—C6—C7     | -177.1 (4) | N8-C14-C21-C22      | -177.3 (3) |
| C5—C6—C7—F2     | 4.5 (8)    | C21A—C14—C21—C22    | -147 (25)  |
| N4—C6—C7—F2     | -177.4 (5) | N6-C14-C21-C26      | 123.7 (4)  |
| C5—C6—C7—F1     | 125.4 (5)  | N8—C14—C21—C26      | 2.6 (5)    |
| N4—C6—C7—F1     | -56.6 (6)  | C21A—C14—C21—C26    | 33 (24)    |
| C5—C6—C7—F3     | -116.3 (6) | C26—C21—C22—C23     | 0.0        |
| N4—C6—C7—F3     | 61.8 (6)   | C14—C21—C22—C23     | 180.0 (5)  |
| N1—C1—C8—C9     | 160.8 (5)  | C21—C22—C23—C24     | 0.0        |
| N3—C1—C8—C9     | 42.5 (6)   | C22—C23—C24—C25     | 0.0        |
| N1-C1-C8-C13    | -19.2 (6)  | C22—C23—C24—Br2     | -178.6 (3) |
| N3—C1—C8—C13    | -137.5 (4) | C23—C24—C25—C26     | 0.0        |
| C13—C8—C9—C10   | 1.3 (8)    | Br2-C24-C25-C26     | 178.6 (3)  |
| C1—C8—C9—C10    | -178.7 (5) | C24—C25—C26—C21     | 0.0        |
| C8—C9—C10—C11   | 0.1 (9)    | C22—C21—C26—C25     | 0.0        |
| C9—C10—C11—C12  | -1.5 (9)   | C14—C21—C26—C25     | -180.0 (5) |
| C9—C10—C11—Br1  | 177.8 (5)  | N6-C14-C21A-C22A    | -66 (4)    |
| C10-C11-C12-C13 | 1.4 (9)    | N8-C14-C21A-C22A    | 177 (3)    |
| Br1-C11-C12-C13 | -177.9 (4) | C21—C14—C21A—C22A   | 26 (22)    |
| C9—C8—C13—C12   | -1.4 (8)   | N6-C14-C21A-C26A    | 114 (3)    |
| C1—C8—C13—C12   | 178.6 (5)  | N8—C14—C21A—C26A    | -3(4)      |
| C11—C12—C13—C8  | 0.1 (8)    | C21—C14—C21A—C26A   | -154 (27)  |
| C15—N6—C14—N8   | 44.6 (5)   | C26A—C21A—C22A—C23A | 0.0        |
| C15—N6—C14—C21  | -79.0 (5)  | C14—C21A—C22A—C23A  | -180 (6)   |
| C15—N6—C14—C21A | -71 (2)    | C21A—C22A—C23A—C24A | 0.0        |
| C16—N8—C14—N6   | -40.1 (5)  | C22A—C23A—C24A—C25A | 0.0        |
| C17—N8—C14—N6   | 150.4 (3)  | C22A—C23A—C24A—Br3  | 179 (4)    |
| C16—N8—C14—C21  | 83.9 (5)   | C23A—C24A—C25A—C26A | 0.0        |
| C17—N8—C14—C21  | -85.6 (5)  | Br3—C24A—C25A—C26A  | -179 (4)   |
| C16—N8—C14—C21A | 80 (3)     | C24A—C25A—C26A—C21A | 0.0        |
| C17—N8—C14—C21A | -89 (3)    | C22A—C21A—C26A—C25A | 0.0        |
| C16—N7—C15—N10  | 168.1 (4)  | C14—C21A—C26A—C25A  | 180 (6)    |
| C16—N7—C15—N6   | -8.7 (6)   |                     |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!- \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|----------------------------|-------------|--------------|--------------|----------------------------------------------------------------------------|
| $N1$ — $H1N$ ··· $N2^{i}$  | 0.87 (2)    | 2.15 (2)     | 3.005 (5)    | 171 (5)                                                                    |
| N5—H5A····O2 <sup>ii</sup> | 0.895 (14)  | 2.09 (3)     | 2.905 (5)    | 152 (5)                                                                    |
| N5—H5B…N4 <sup>i</sup>     | 0.892 (14)  | 2.25 (2)     | 3.095 (6)    | 159 (5)                                                                    |
| N5—H5B…F1 <sup>i</sup>     | 0.892 (14)  | 2.46 (4)     | 3.054 (5)    | 124 (4)                                                                    |
| N6—H6N…N7 <sup>iii</sup>   | 0.902 (19)  | 2.10 (3)     | 2.967 (5)    | 160 (5)                                                                    |
| N10—H10A…O1                | 0.89 (2)    | 2.03 (3)     | 2.885 (5)    | 162 (5)                                                                    |

N10—H10B···N9<sup>iii</sup> 0.90 (2) 2.15 (2) 3.041 (5) 171 (5) Symmetry codes: (i) -x+2, -y+1, z-1/2; (ii) -x+3/2, y+1/2, z+1/2; (iii) x-1/2, -y+1/2, z.

Fig. 1





Fig. 2

Fig. 3



